Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500760

RESUMO

Metal-organic frameworks (MOFs) can be used as reservoirs of metal ions with relevant antibacterial effects. Here, two novel Zn-based MOFs with the formulas [Zn4(µ4-O)(µ-FA)L2] (GR-MOF-8) and [Zn4(µ4-O)L2(H2O)] (GR-MOF-9) (H3L: 5-((4-carboxyphenyl)ethynyl) in isophthalic acid and FA (formate anion) were solvothermally synthetized and fully characterized. The antibacterial activity of GR-MOF-8 and 9 was investigated against Staphylococcus aureus (SA) and Escherichia Coli (EC) by the agar diffusion method. Both bacteria are among the most relevant human and animal pathogens, causing a wide variety of infections, and are often related with the development of antimicrobial resistances. While both Zn-based materials exhibited antibacterial activity against both strains, GR-MOF-8 showed the highest inhibitory action, likely due to a more progressive Zn release under the tested experimental conditions. This is particularly evidenced in the inhibition of SA, with an increasing effect of GR-MOF-8 with time, which is of great significance to ensure the disappearance of the microorganism.

2.
Inorg Chem ; 61(3): 1377-1384, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35015526

RESUMO

A new Y-based metal-organic framework (MOF) GR-MOF-6 with a chemical formula of {[YL(DMF)2]·(DMF)}n {H3L = 5-[(4-carboxyphenyl)ethynyl] isophthalic acid; DMF = N,N-dimethylformamide} has been prepared by a solvothermal route. Structural characterization reveals that this novel material is a three-dimensional MOF in which the coordination of the tritopic ligand to Y(III) metal ions leads to an intercrossing channel system extending over three dimensions. This material has proven to be a very efficient catalyst in the cyanosilylation of carbonyls, ranking second in catalytic activity among the reported rare earth metal-based MOFs described so far but with the lowest required catalyst loading. In addition, its electrophoretic behavior has been studied in depth, providing a zero-charge point between pH 4 and 5, a peak electrophoretic mobility of -1.553 µm cm V-1 s-1, and a ζ potential of -19.8 mV at pH 10.

3.
Inorg Chem ; 59(21): 15733-15740, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33035421

RESUMO

Herein, two novel isostructural metal-organic frameworks (MOFs) M-URJC-4 (M = Co, Ni; URJC = "Universidad Rey Juan Carlos") with open metal sites, permanent microposity, and large surface areas and pore volumes have been developed. These novel MOFs, with polyhedral morphology, crystallize in the monoclinic P21/c space group, exhibiting a three-dimensional structure with microporous channels along the c axis. Initially, they were fully characterized and tested in hydrogen (H2) adsorption at different conditions of temperature and pressure. The physisorption capacities of both materials surpassed the gravimetric H2 uptake shown by most MOF materials under the same conditions. On the basis of the outstanding adsorption properties, the Ni-URJC-4 material was used as a catalyst in a one-pot reductive amination reaction using various carbonyl compounds and primary amines. A possible chemical pathway to obtain secondary amines was proposed via imine formation, and remarkable performances were accomplished. This work evidences the dual ability of M-URJC-4 materials to be used as a H2 adsorbent and a catalyst in reductive amination reactions, activating molecular H2 at low pressures for the reduction of C═N double bonds and providing reference structural features for the design of new versatile heterogeneous materials for industrial application.

4.
Chemphyschem ; 20(10): 1334-1339, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30657621

RESUMO

A novel URJC-3 material based on cobalt and 5,5'-(diazene-1,2-diyl)diisophthalate ligand, containing Lewis acid and basic sites, has been synthesized under solvothermal conditions. Compound URJC-3, with polyhedral morphology, crystallizes in the tetragonal and P43 21 2 space group, exhibiting a three-dimensional structure with small channels along a and b axes. This material was fully characterized, and its hydrogen adsorption properties were estimated for a wide range of temperatures (77-298 K) and pressures (1-170 bar). The hydrogen storage capacity of URJC-3 is quite high in relation to its moderate surface area, which is probably due to the confinement effect of hydrogen molecules inside its reduced pores of 6 Å, which is close the ionic radii of hydrogen molecules. The storage capacity of this material is not only higher than that of active carbon and purified single-walled carbon nanotubes, but also surpasses the gravimetric hydrogen uptake of most MOF materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...